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1. Introduction 

 Earthquake has always been a major threaten to Japan, 

which caused huge loss in recent years. It is predicted that 

there may be an inland earthquake hitting Tokyo in near 

30 years. To mitigate the possible losing of life and 

property, it is of great importance to ensure that all 

evacuees can get to shelters in the shortest possible time. 

In Tokyo metropolitan, the usual practice is to designate 

public elementary school, public middle school and other 

public facilities (high school, gym, etc.) as shelters. By the 

disaster prevention plan, these shelters are capable of 

accepting most evacuees under emergency conditions. 

However, in the context of novel coronavirus, shelters 

cannot accommodate the same number of evacuees as 

before due to the necessary distance needed to avoid 

possible exposure. Therefore, more shelters are in need. 

The challenge lies in selecting the best option from 

multiple potential shelters. Moreover, the demand, which 

means the number of people who need going to shelter, 

remains uncertain before making the choice. These 

difficulties make the problem of shelter location selection 

hard to solve. 

To cope with demand uncertainty in shelter location 

problem, previous studies mainly adopt stochastic 

programming (SP) (A. C. Y. Li et al., 2012; L. Li et al., 

2011; Xu et al., 2018) and robust optimization (RO) 

(Kulshrestha et al., 2011). SP minimizes the expected 

value of objective function with the assumption that the 

probability distribution of scenarios is known, while RO 

only consider the worst scenario. These two approaches 

are either too progressive or too conservative. In this study, 

we consider a two-stage distributionally robust model, in 

which we make decision that makes the expected value for 

the worst-case probability distribution within a set of 

distributions (Bansal et al., 2018). We expect that DRO 

will make appropriate decisions to better help authority 

decide the location of shelters. 

 

2. Literature review 

 This part will review the literature on: (i) SP and RO 

model for location-allocation problem; (ii) DRO model. 

2.1．SP and RO studies for location-allocation problem 

 Shelter location-allocation problem has been widely 

discussed in disaster management literature. Some works 
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do not specifically study on shelters, but they also discuss 

similar location choice problem in disaster (Dönmez et al., 

2021; Grass & Fischer, 2016). Earthquake (Balcik & 

Beamon, 2008; Döyen et al., 2012; Mete & Zabinsky, 

2010; Xu et al., 2018), hurricane (A. C. Y. Li et al., 2012; 

L. Li et al., 2011; Rawls & Turnquist, 2011) and flood 

(Chang et al., 2007; Maqsood & Huang, 2013) are most 

concerned disaster type. Since disaster management can 

be roughly classified into pre- and post-disaster phase, 

two-stage paradigm is widely used. In the pre-disaster 

stage (preparedness stage), decisions are often made on 

location of facility (A. C. Y. Li et al., 2011; Mete & 

Zabinsky, 2010; Ozbay et al., 2019), capacity (Cai et al., 

2011; A. C. Y. Li et al., 2011) or pre-positioned relief 

(Davis et al., 2013; Rawls & Turnquist, 2011). 

Minimization of costs is most commonly used for 

objective function in first stage. These costs include the 

fixed cost for a new shelter (lighting equipment, electric 

generator, toilet, etc.), variable cost corresponding to one 

evacuee (food, water, blanket, etc.). The objective of first 

stage is to minimize the fixed or variable cost of selected 

facilities, the cost of pre-positioned items. Evacuation 

flow, unmet demand (A. C. Y. Li et al., 2011; L. Li et al., 

2011), relief flow, shortage and unused relief (Alem et al., 

2016; S. L. Hu et al., 2015) are usually decision variables 

of the post-disaster stage (response stage). Objective of the 

second stage is often to minimize the transportation cost, 

penalty cost for unmet demand, shortage and surplus items. 

The penalty cost is set by authorities to ‘punish’ the waste 

of relief, excess or insufficient capacity in order to make 

the selected shelters just meet the demand. 

 In the second stage, uncertainties are revealed, therefore, 

capturing uncertainties of disaster is the main challenge. 

Among different uncertainties (supply uncertainty, 

demand uncertainty, network connectivity uncertainty) 

considered in location-allocation problem, demand 

uncertainty is the most common, where a large body of 

literature focus on (L. Li et al., 2011; Mostajabdaveh et al., 

2019; Ozbay et al., 2019). Stochastic programming (SP) 

and robust optimization (RO) are both common paradigms 

to deal with uncertainties in location-allocation problems. 

When the probability distribution of random scenarios is 

known or can be assumed to follow certain distribution, 

SP, which minimizes the expected value of second stage 

objective function with a predefined probability 

distribution can be used. The method to solve such 

stochastic programming can be divided into two groups by 

the type of solution. The first group is exact solution 

method. The most basic algorithm is L-shaped method 

(Slyke, R M Van; Wets, 1969), which approximates the 

nonlinear term in the objective of problems by adding 

cutting plane. In original L-shaped algorithm, the decision 

variable in first and second stage are continuous variable. 

However, it has been proved that if there are only pure 

integer variables in first stage, the optimal solution can be 

obtained in finite iterations (Ahmed et al., 2004; Laporte 

et al., 1994). Moreover, if there exists both continuous and 

integer variables (i.e., mixed integer), it may need more 

cutting plane before finally convergence (Sanci & Daskin, 

2021). However, if integer or mixed integer variables are 

in second stage, these optimality cuts can no longer be 

obtained by LP duality which is used in classical L-shaped 

algorithm. Most location-allocation problems do not 

involve integer variable in second stage, therefore, L-

shaped algorithm has good application if the problem size 

is not too large (L. Li et al., 2011; Liu et al., 2009; Noyan 

et al., 2016). In real-world, there are many options and 

scenarios, which could make the problem size quite large. 

In such cases, heuristics can be employed to get an 

approximate solution in a short time (F. Hu et al., 2014; A. 

C. Y. Li et al., 2011; Yu et al., 2018). If the distribution is 

unknown and cannot be assumed to match certain 

distribution, robust optimization is a good way to model 

uncertainty (Kulshrestha et al., 2011). In DRO model, an 

uncertainty set is assumed for each random parameter, the 

decision is made to ensure that the solution is feasible in 

whatever value of the parameter. 

 

2.2．Distributionally robust optimization 

 Distributionally robust optimization (DRO) can be seen 
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as a combination of SP and RO. Unlike SP and RO, DRO 

aims to optimize the objective function value under worst 

probability distribution. DRO constructs an ambiguity set 

which includes different probability distributions, and the 

solution should be feasible in any distribution within the 

set. In previous studies, ambiguity sets can be categorized 

into two groups: moment-based and discrepancy-based 

ambiguity sets (Rahimian & Mehrotra, 2019). Typically, a 

moment-based ambiguity set sets the lower and upper 

bound of moments of possible probability distributions, 

while discrepancy-based ambiguity sets contain the 

distributions which are close to certain distribution. There 

are also some special ambiguity sets, like Markov 

ambiguity set, Chebyshev ambiguity set, Gauss ambiguity 

set, Median-absolute deviation ambiguity set, Huber 

ambiguity set, Hoeffding ambiguity set, Bernstein 

ambiguity set, Choquet ambiguity set, Mixture ambiguity 

set. DRO can be reformulated as semi-infinite 

programming (SIP), which can be solved by cutting-

surface method (Bansal et al., 2018; Rahimian et al., 2019) 

or dual method (Bertsimas et al., 2010; Delage & Ye, 

2010; Wiesemann et al., 2013). Compared to SP and RO, 

DRO shows the merit of great degree of freedom to 

construct the uncertainty set, also, in real-world problem, 

the objective value calculated by DRO model will not be 

too high or too low, which makes it suitable to solve 

location-allocation problem. Up to now, although there is 

a large body of literatures adopt SP or RO to solve shelter 

location-allocation problem, it seems that DRO has not 

been used in such problem. 

 

3. Model formulation and solution method 

 In this study, we employ a two-stage paradigm to model 

demand uncertainty and decision-making. In the first stage 

(preparedness stage), the authority should decide the 

location and capacities of new shelters. In the second stage, 

the authority needs to allocate evacuees from each demand 

point to each shelter (including existing shelters and new 

shelters). The number of evacuees in each demand point 

after earthquake is the uncertain parameter, which can be 

got from history data or simulation results. We apply SP, 

RO, DRO respectively to model the uncertainty and 

compare the results.  

 These three models share the same parameters and 

decision variables as follows: 

 

Table 1 model parameter  

First 

stage 

𝑓𝑖 Fixed cost for shelter 𝑖 , including 

necessary equipment (lighting, 

power, toilet, etc.) for opening a 

shelter 

𝑣 Variable cost, referring to the relief 

cost (food, water, blanket, mask, 

other daily necessities, etc.) 

corresponding to one evacuee 

𝑃𝑆 Set of potential shelters 

Second 

stage 

𝑑𝑘𝑖 Transportation cost (vehicle, fuel, 

etc.) of allocating one evacuee from 

demand point 𝑘  to shelter 𝑖 , 

which is in proportion to the 

distance between 𝑘 and 𝑖 

𝑚 Unit penalty cost for unmet 

demand 

𝑛 Unit penalty cost for unused 

capacity 

𝛲𝑠 Probability distribution of 

scenarios 

𝐷𝑘(𝑠) Demand at demand point 𝑘  in 

scenario 𝑠 

𝐸𝑆 Set of existing shelters 

𝐾 Set of demand points 

𝑆 Set of scenarios 

𝑈 moment-based ambiguity set 

 

Table 2 model decision variable 

First 

stage 

𝑥𝑖 1 if potential evacuation center 𝑖 

is selected, 0 otherwise 

𝑐𝑖 Capacity of evacuation center 𝑖 

Second 𝑞𝑘𝑖(𝑠) Number of evacuees being 
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stage allocated from demand point 𝑘 

to selected shelter 𝑖 

𝑞𝑘𝑗(𝑠) Number of evacuees being 

allocated from demand point 𝑘 

to existing shelter 𝑗 

𝑧𝑘
−(𝑠) Unmet demand at demand point 

𝑘 

𝑧𝑖
+(𝑠) Unused capacity at selected 

shelter 𝑖 

𝑧𝑗
+(𝑠) Unused capacity at existing 

shelter 𝑗 

 The objective function (1) for first stage is to minimize 

the fixed cost of new shelters and the variable cost which 

corresponding to capacity. 𝜋(x, c, s)  is the objective 

function value of second stage given the value of 𝑥 and 

𝑐  in scenario s . Equation (1.1) is SP, where 

𝐸𝑠[𝜋(𝑥, 𝑐, 𝑠)] is the expected value of 𝜋(x, c, s), in this 

study we assume that each scenario has equal probability. 

Equation (1.2) is RO, where max
𝑠∈𝑆

[𝜋(𝑥, 𝑐, 𝑠)]  is the 

worst-case by selecting the scenario which makes the cost 

of second stage max. Equation (1.3) is DRO, where 

max
𝛲𝑠∈𝑈

𝐸𝑠[𝜋(𝑥, 𝑐, 𝑠)]  is the worst-case by selecting the 

probability distribution which makes the cost of second 

stage max. Constraint (4), where 𝑀  is a big number, 

ensures that the capacities of unselected shelters are 0. 

min ∑ 𝑓
𝑖
𝑥𝑖 +

𝑖∈𝑃𝑆

∑ 𝑐𝑖𝑣
𝑖∈𝑃𝑆

+ 𝑄 (1) 

 

Q = 𝐸𝑠[𝜋(𝑥, 𝑐, 𝑠)] (1.1) 

 

Q = max
𝑠∈𝑆

[𝜋(𝑥, 𝑐, 𝑠)] (1.2) 

 

Q = max
𝛲𝑠∈𝑈

𝐸𝑠[𝜋(𝑥, 𝑐, 𝑠)] (1.3) 

 

s.t. 

𝑥𝑖 ∈ {0,1} (2) 

 

𝑐𝑖 ≥ 0 (3) 

 

𝑐𝑖 ≤ 𝑀𝑥𝑖 (4) 

 In the second stage, the objective function (5) 

minimizes the cost of allocating people from demand 

points to shelters, the penalty cost of unused capacity and 

unmet demand. Constraints (6) and (7) are used to get the 

possible unused capacity of each shelter (number of 

evacuees from all demand points should not exceed the 

capacities of shelters). Constraint (8) is to obtain the 

possible unmet demand in each demand point. 

𝜋(x, c, s) =

min

{
 
 
 
 

 
 
 
 ∑∑ 𝑑𝑘𝑖𝑞𝑘𝑖(𝑠)

𝑖∈𝑃𝑆𝑘∈𝐾

+

∑ ∑ 𝑑𝑘𝑗𝑞𝑘𝑗(𝑠)

𝑗∈𝐸𝑆

+

𝑘∈𝐾

𝑚∑ 𝑧𝑘
−(𝑠)

𝑘∈𝐾

+ 𝑛∑ 𝑧𝑖
+(𝑠)

𝑖∈𝑃𝑆

+

𝑛∑ 𝑧𝑗
+(𝑠)

𝑗∈𝐸𝑆 }
 
 
 
 

 
 
 
 

(5)
 

 

s.t. 

∑ 𝑞𝑘𝑗(𝑠)𝑘∈𝐾 − 𝑐𝑗 + 𝑧𝑗
+(𝑠) = 0    ∀𝑗 ∈ 𝐸𝑆 (6) 

 

∑𝑞𝑘𝑖(𝑠)

𝑘∈𝐾

− 𝑐𝑖 + 𝑧𝑖
+(𝑠) = 0    ∀𝑖 ∈ 𝑃𝑆 (7) 

 

∑ 𝑞𝑘𝑖(𝑠)

𝑖∈𝑃𝑆

+ ∑ 𝑞𝑘𝑗(𝑠)

𝑗∈𝐸𝑆

+ 𝑧𝑘
−(𝑠)

−𝐷𝑘(𝑠) = 0    ∀𝑘 ∈ 𝐾 (8)

 

 

𝑞𝑘𝑖(𝑠), 𝑞𝑘𝑗(𝑠), 𝑧𝑗
+(𝑠), 𝑧𝑖

+(𝑠), 𝑧𝑘
−(𝑠) ≥ 0 (9) 

 Here we use the classical L-shaped algorithm to solve 

SP, RO, and use a modified L-shaped algorithm to solve 

DRO. First, we write the dual problem of 𝜋(x, c, s) as 

(10)-(15), then rewrite the original two-stage problem 

into the so-called master problem as (1), (16), (2), (3), 

where 𝜆 , 𝜌  is the decision variable of the sub dual 

problem. 

�̅�(x, c, s) =

max {− ∑ 𝑐𝑖𝜆𝑖
𝑖∈𝑃𝑆,𝐸𝑆

−∑𝐷𝑘(𝑠)𝜌𝑘
𝑘∈𝐾

} (10)
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𝜌𝑘 + 𝜆𝑖 + 𝑑𝑘𝑖 ≥ 0    ∀𝑘 ∈ 𝐾  𝑖 ∈ 𝑃𝑆 (11) 

 

𝜌𝑘 + 𝜆𝑗 + 𝑑𝑘𝑗 ≥ 0    ∀𝑘 ∈ 𝐾  𝑗 ∈ 𝐸𝑆 (12) 

 

𝜆𝑖 ≥ −𝑛    𝑖 ∈ 𝑃𝑆 (13) 

 

𝜆𝑗 ≥ −𝑛    𝑗 ∈ 𝐸𝑆 (14) 

 

𝜌𝑘 ≥ −𝑚    𝑘 ∈ 𝐾 (15) 

 

𝜋(𝑥, 𝑐, 𝑠) ≥

−∑ 𝑐𝑖𝜆𝑖(𝑠)

𝑖∈𝑃𝑆

− ∑ 𝑐𝑗𝜆𝑗(𝑠)

𝑗∈𝐸𝑆

−∑𝐷𝑘(𝑠)

𝑘∈𝐾

𝜌𝑘 (16) 

 

 The algorithm is as follows: 

Step 0: Set iteration 𝑙 = 0 , lower bound 𝐿𝐵 = −∞ , 

upper bound 𝑈𝐵 = ∞, initial optimal value 𝑥1, 𝑐1. 

Step 1: For 𝑠 ∈ 𝑆, solve sub dual problem, get optimal 

solution 𝜆𝑙(𝑠) , 𝜌𝑙(𝑠)  and optimal objective value 

𝜋(𝑥𝑙, 𝑐𝑙, 𝑠). 

Step 2: For RO, set the probability of worst-case as 1, 

other scenarios 0. For SP, set equal probability to each 

scenario. For DRO model, solve distribution separation 

problem (17)-(19) to get probability distribution 𝛲𝑠 . 

Distribution separation problem (Bansal et al., 2018) is 

used to get the probability distribution from a moment-

based uncertainty set, 𝑙𝑏, 𝑢𝑏 is the lower and upper 

bound for first moment of uncertain demand set, 𝑙�̅� 

and 𝑢𝑏̅̅ ̅  is the lower and upper bound for second 

moment of uncertain demand set, 𝑝
𝑠
𝑙  is the probability 

of scenario 𝑠 in iteration 𝑙: 

max∑𝑝𝑠
𝑙

𝑠∈𝑆

𝜋(𝑥𝑙 , 𝑐𝑙 , 𝑠) (17) 

 

𝑙𝑏𝑘 ≤∑𝑝𝑠
𝑙

𝑠∈𝑆

𝐷𝑘(𝑠) ≤ 𝑢𝑏𝑘    ∀𝑘 ∈ 𝐾 (18) 

 

𝑙�̅�𝑘 ≤∑𝑝𝑠
𝑙(𝐷𝑘(𝑠)− 𝐸𝑠(𝐷𝑘))

2

𝑠∈𝑆

≤ 𝑢𝑏̅̅̅̅ 𝑘    ∀𝑘 ∈ 𝐾 (19) 

Step 3: If 𝑈𝐵 > ∑ 𝑓
𝑖
𝑥𝑖
𝑙 +𝑖∈𝑃𝑆 ∑ 𝑐𝑖

𝑙𝑣𝑖∈𝑃𝑆 + 𝑄 , update 

𝑈𝐵  as the right-hand side value, if 𝑈𝐵 ≤ 𝐿𝐵 + 𝜀 , 

iteration stops, 𝜀 is the tolerance gap. 

Step 4: Solve master problem (1)-(4), (10) by adding 

optimality cut got in step 1:  

𝑄 ≥ 𝐸𝑠[−∑ 𝑐𝑖𝜆𝑖
𝑙(𝑠)𝑖∈𝑃𝑆 −∑ 𝑐𝑗𝜆𝑗

𝑙(𝑠)𝑗∈𝐸𝑆 −

∑ 𝐷𝑘(𝑠)𝑘∈𝐾 𝜌𝑘
𝑙 (𝑠)],  

where 𝐸𝑠  means the expected value following the 

probability distribution got in step 2. In this step we get 

optimal value 𝑥𝑙, 𝑐𝑙, update 𝐿𝐵 if the objective value 

of master problem is bigger than 𝐿𝐵 . 𝑙 = 𝑙 + 1 . 

Return to step 1.  

 

4. Case study in Meguro City 

 To test the algorithm and compare the results of three 

models, a case study was conducted in Meguro City. 

4.1. Case description and data 

 Meguro City is located in the southwest of Tokyo 

Metropolitan, with 278,654 residents by the end of 2021. 

This case consisted of 88 demand points, 38 existing 

shelters and 38 potential shelters. Almost all the existing 

shelters are public school. We estimated the capacities of 

these shelters by effective sheltering area and per capital 

sheltering area. We set the per capital sheltering area as 6.6 

m2, which is double of the area before the spread of novel 

coronavirus. Therefore, the estimated capacity of school 

can be obtained by equation (20), where 0.7 is the ratio of 

effective area to total area. 

 The uncertain demand set was got by the following 

steps: (i) get the population in each building by assuming 

that the population is proportional to building area; (ii) get 

the attribute (age and structure) of each building (building 

structure was known, then we only need to randomly 

generate the building age); (iii) calculate the completely 

collapse rate for each building by equation (21) using the 

parameters of normal distribution shown in table 3, where 

𝑃(𝑃𝐺𝑉) (PGV is peak ground velocity, and we set it as 

150 cm/s) is the completely collapse probability, 𝜆 and 

𝜁  is expectation and standard deviation; (iv) randomly 

generate the state of each building (collapse or not) by the 

probability we got in step (iii). By these four steps we can 
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get one scenario, then we repeated the process for 100 

times, then we got 100 scenarios. 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = (𝑎𝑟𝑒𝑎𝑔𝑦𝑚 + 𝑎𝑟𝑒𝑎𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚)
0.7

3.3 × 2
(20) 

 

𝑃(𝑃𝐺𝑉) = Φ(
ln(𝑃𝐺𝑉) − 𝜆

𝜁
) (21) 

 

 

Figure 1 existing shelter and potential shelter in study area 

(Meguro City) 

 

Table 3 parameters for different structure and age 

Building 

structure 

Building age 𝜆 𝜁 

Wooden ~ 1971 4.84 0.71 

1972 ~ 1981 5.11 0.76 

1982 ~ 1991 5.41 0.64 

1992 ~ 2001 5.70 0.70 

2002 ~  6.62 0.89 

RC ~ 1971 5.12 0.65 

1972 ~ 1981 5.33 0.58 

1982 ~ 6.00 0.79 

Steel ~ 1971 4.64 0.62 

1972 ~ 1981 4.97 0.49 

1982 ~ 5.64 0.73 

 

4.2. Results and analysis 

 Since the penalty cost can be subjectively decided by 

authorities, it reflects the preference for conservative or 

radical decision-making style. For example, if the ratio of 

𝑛  (unit penalty cost for unused capacity) to 𝑚  (unit 

penalty cost for unmet demand) is bigger than 1, it 

means that compared to possible waste of capacity, the 

authority cares more about the number of evacuees who 

could use shelters. Moreover, if the ratio is very large, 

it shows that the authority hopes to ensure all evacuees 

could go to shelter no matter how many capacities may 

be wasted. We set the ratio of 𝑛 to 𝑚 as 1, meaning 

that we do not want either excess or insufficient 

capacity to the same degree, and apply these parameters 

and uncertainty demand set into SP, RO, DRO 

respectively, then we got the results of selected shelters 

and their capacities as in figure 2. The locations being 

selected and capacities being decided are totally 

different in three models. RO selected 12 shelters with 

a total capacity of 8,773, which are both the most 

among three models. This is because in RO model, the 

demand in each demand point is equal or greater than 

which is in SP and DRO model, therefore, more shelters 

should be chosen to ensure all the demand points meet 

their demands. DRO selected 6 shelters with capacity 

of 6,593, and SP selected 10 shelters with capacity of 

8,618. Although the cost of DRO in first stage is smaller 

than SP, the total cost of DRO, which includes 

transportation cost and penalty cost, is bigger than SP. 

Compared to SP which minimizes the expected value 

of second stage objective function, DRO minimizes the 

maximum value of second stage objective function 

among a set of probability distributions (ambiguity set). 

It is expected that the second stage objective value of 

DRO should be bigger than SP. It indicates that for this 
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proposed DRO model, we can save costs in the first 

stage while ensure as many evacuees go to shelters as 

possible in the meantime. 

 Change the ratio of 𝑛  to 𝑚 , and run these three 

models to get the total cost. We can see from figure 3 that: 

(i) the total cost of DRO is between RO and SP; (ii) the 

cost of RO is much higher than SP and DRO; (iii) cost of 

DRO is just a litter higher than SP, and as the ratio of 𝑛 

to 𝑚  rises, the gap seems to be enlarged. This 

corresponds to our assumption, since DRO optimizes the 

objective function under the worst probability distribution, 

therefore, its value must be equal or bigger than SP which 

optimizes under a pre-defined distribution. RO gets the 

biggest objective value because it must ensure feasibility 

under the worst scenario. In our case it means that the 

shelters selected by DRO should always meet the biggest 

demand. 

 

 

Figure 2 selected shelters and capacities for 𝑛:𝑚 = 1 

 

 

Figure 3 total cost of SP, RO and DRO 

 

5. Discussions and conclusions 

 This study adopts distributionally robust optimization 

(DRO) in shelter location-allocation problem by 

constructing a moment-based ambiguity set. To the best of 

our knowledge, it is the first time to incorporate DRO to 

such problem. A case study in Meguro City was conducted 

to compare the objective value of SP, RO and DRO. It 

shows that the value of DRO is between another two 

models. This proposes a new way to solve shelter location-

allocation problem which can save cost under a limit 

budget compared to conservative RO model. Also, it 

ensures that more evacuees can use shelters compared to 

SP model, which is relatively reliable under extreme 

conditions. However, there are still several points that 

need further study in the future: (i) we only use moment-

based ambiguity set, in fact there are many other sets 

available; (ii) the gap of DRO and SP seems to increase as 

parameter changes, how these parameters works on the 

cost gap remains unknown; (iii) the algorithm need to be 

improved to be more effective. 
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