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1. Introduction 

The building footprint is a primary dataset in an urban 

geographic information system (GIS) database, which is 

essential for urban planning, map production, and 

population estimation. Due to the background's 

complexity (e.g., shadows and other artificial objects such 

as buildings) and diversity in the remote sensing image 

sources (e.g., different spatial resolution and capture time), 

establishing a reliable building database poses significant 

challenges. 

In recent years, with the rapid development of deep 

learning technology (DL) in computer vision, deep 

learning models are gradually introduced into remote 

sensing. Many researchers have used semantic 

segmentation approaches to achieve efficient and 

automatic building extraction from remote sensing images 

(Shao et al., 2020). However, the study of building 

extraction methodologies is not limited to semantic 

segmentation. Most practical applications focus on 

whether a pixel is a building and classify different 

buildings individually to obtain the distribution and 

number of buildings, which is a typical instance 

segmentation task (Wagner et al., 2020). 

Besides, in terms of data sources, high-resolution (HR) 

remote sensing imagery is not always available due to the 

limitation of technology and hardware costs. In that case, 

people have to use open-sourced satellite images 

alternative. In earlier research, we used the Mask R-CNN 

model to extract building footprints in instance-level for a 

wide area from 0.6-1 m open sourced satellite images. 

However, due to the low image resolution and vast 

variation of building in different regions, multiple 

buildings were detected as a single one, especially in 

dense residential and urban building areas (Chen, Ogawa, 

Zhao, & Sekimoto).  

For the two-stage instance segmentation task, the 

semantic segmentation in the second stage is usually not 

accurate for locating regional boundaries, tending to cause 

edge bonding of adjacent areas. Traditional hybrid image 

segmentation algorithms have been shown to integrate 

different segmentation methods to help improve results in 

the edge part (Merabet, Meurie, Ruichek, Sbihi, & 

Touahni, 2015). Among them, the watershed algorithm is 

a mathematical morphology-based region segmentation 

method, which can provide closed contour lines when the 

target region has low resolution and weak edges. 

Therefore, based on this idea, we tried to use the 

watershed algorithm as post-processing to improve the 

problem of building adhesion. First, colour normalization 

and super-resolution were applied to improve open-source 
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images' quality. Then, an enhanced Mask R-CNN with a 

Multi-path Vision Transformer (MPViT) as backbone was 

used to extract the building footprint. Finally, the 

watershed algorithm was applied to separate connected 

buildings. To demonstrate the validity of the proposed 

framework, we chose three different areas with one km2 

(urban, suburban, and rural) and evaluated the extraction 

accuracy. 

 

2. Related works 

Since Ji, Wei, and Lu (2018) realized the extraction of 

buildings based on a Mask R-CNN model and achieved 

better pixel-wise accuracy than the FPN, the instance-

based segmentation approach has proven its effectiveness 

for building extraction. There are two primary approaches 

for instance segmentation for building extraction: (1) 

semantic segmentation based, and (2) end-to-end instance 

segmentation. In (1), semantic segmentation first 

classifies each image pixel as either a building or non-

building; the subsequent post-processing extracts the 

instances (Wagner et al., 2020). For example,  Sirko et al. 

(2021) extracted 516M building footprints of Africa based 

on the U-Net model. They achieved the performance of 

instance segmentation by improving network architecture, 

loss functions and training strategy.  

In (2), the problem is decomposed into feature 

extraction, boundary box regression, and mask prediction 

stages. Approach (2) is direct and flexible, allowing the 

algorithm to obtain boundary boxes and segmentation 

masks and perform better (Wen et al., 2019). Most state-

of-the-art instance segmentation methods are end-to-end 

models, such as Mask R-CNN, MS R-CNN, and 

RefineMask. Therefore, some researchers have designed 

novel algorithms to extract buildings from remote sensing 

images based on state-of-the-art instance segmentation 

methods. Wu, Hu, Peng, and Chen (2020) proposed an 

anchor-free instance segregation method based on 

CenterMask and balanced building extraction accuracy 

and efficiency. Y. Wang et al. (2022) fused RGB images 

from an unmanned aerial vehicle (UAV) with visible light 

difference vegetation index (VDVI) features and Sobel 

edge detection features to improve the recognition 

accuracy of the Mask R-CNN model for rural building 

roofs. Liu, Liu, Ning, and Li (2022) proposed an MS-CNN 

model combing ResNet and Mask R-CNN, improving 

multi-scale feature extraction capability by using a fusion 

enhancement strategy and feature segmentation 

mechanism.  

In summary, in order to obtain building footprint in 

instance-level, researchers often increase the complexity 

of the model or fusing multiple channels data to extract as 

much feature information as possible. However, it also 

increases the computational cost, while reducing the 

generality of the algorithm. In contrast, we went to the 

basics of image processing and morphological operations 

to disjoint the connected parts. The proposed method is 

independent of deep learning model architecture, which is 

simple to realize and can be integrated into any instance 

segmentation model. 

 

3. Dataset 

We selected representative areas from other parts of 

Japan as the training set, primarily located in Shinjuku, 

Setagaya, Hachioji, and Susono City. The data source of 

training data is Google Earth (GE), with a spatial 

resolution of 0.3 m. We collected 1,222 aerial ortho-colour 

images of dimensions 1,024 × 1,024 pixels and manually 

labelled over 186,000 high-quality building footprints. All 

photos were in TIF format with three channels (RGB), and 

the corresponding labels were annotated according to the 

COCO annotation format (Lin et al., 2014). The data were 

assigned to the training and validation sets in the ratio of 

70%:30%, respectively. The examples of training data for 

different areas are shown in Figure 1. The number of 

image data for other regions is shown in Table 1. Parts of 

the training data could be available publicly (Miyazaki, 

2022). 

We selected the open-sourced seamless satellite image 

dataset for test data from the Geospatial Information 
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Authority of Japan (GSI)0F

1 . The GSI seamless photo 

dataset contains PNG images obtained from multiple 

sources with a resolution ranging from 0.6–1 m. All test 

images were mosaicked together and cropped to the 

dimensions of 1024 × 1024 pixels with 20% overlapping 

to avoid splitting buildings at the image edges. The 

defective parts were filled using black pixels.  

 

Figure 1. Example of training data in different regions, 

including a) high-rise, b) urban, c) suburban, and d) rural areas. 

 

Table 1. Number of image data in different regions. 

Area Shinjuku Setagaya Hachioji Susono 

Training set 32 240 269 319 

Validation set 8 103 115 136 

 

4. Methodology 

Figure 2 shows the three procedures constituting the 

proposed framework: (1) image pre-processing, (2) 

building extraction, and (3) result post-processing. First, 

test images are performed colour normalization and super-

resolution to eliminate colour differences and enhance 

texture details. The pre-processed patches are 

subsequently input into the instance segmentation model 

to predict the building footprint. Finally, the prediction 

results in raster format are post-processed to separate 

connected objects through a watershed algorithm and 

generate a distribution map in vector format.  

 

 
1  URL: https://www.gsi.go.jp/tizu-kutyu.html (Accessed on 

03/25/ 2022) 

 
Figure 2. Proposed framework for building extraction with 

watershed algorithm. 

4.1 Image pre-processing 

The GSI test images were sourced from multiple 

sources with a resolution range from 0.6-1 m. The color 

difference disrupts the visual continuity of the images and 

impedes the generalization ability of the building 

extraction model. Moreover, the lower image resolution 

makes the textures and outline details of the buildings 

blurry. Therefore, we first performed colour normalization 

and super-resolution to improve the quality of the test 

images. 

Figure 3 illustrates the framework of the colour 

normalization algorithm based on a reference map. 

Analyzed from a spectral perspective, remote sensing 

images can be divided into high- and low-frequency 

information. High-frequency information is caused by the 

sharp excess of grayscale, primarily including the texture 

and edges of buildings. The low-frequency information is 

related to the grayscale component of image variations, 

which reflects the trend of image colour variations. As the 

low-frequency component of the image is smooth, the 

replacement of the low-frequency information will not 

interfere with the high-frequency information of the 

picture. Therefore, we considered the low-frequency 

information of the reference image as a standard to correct 

the tones of the test image (Cui, Zhang, Wang, Li, & Qi, 

2021). We selected the 3 m resolution GE image as the 

reference map in this study. 

For super-resolution, we adopted the Real-ESRGAN 
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network. (X. Wang, Xie, Dong, & Shan, 2021), which 

proposes a high-order degradation approach by 

introducing two times the number of degradation 

parameters as traditional degradation (blur, noise, resize, 

and image compression). Figure 4 shows the architecture 

of the Real-ESRGAN network, which contains a 

generation network and a u-net discriminator. The 

generative network is the same as that of ESRGAN. In 

addition, the U-Net discriminator can judge the 

authenticity of generated images from the pixel 

perspective, focusing on the details of the generated image 

while ensuring overall authenticity. Figure 5 shows an 

example of a test image after pre-processing. It is shown 

that the tone of the processed image is close to that of the 

reference image, and the texture detail of the building has 

been significantly improved. 

 

 

 
Figure 5. Example of pre-processed image. 

4.2 Instance segmentation model 

This study combines Mask R-CNN and a multi-path 

vision transformer (MPViT) as the instance segmentation 

model for building extraction. (He, Gkioxari, Dollár, & 

Girshick, 2017; Lee, Kim, Willette, & Hwang, 2021) 

Mask R-CNN is a widely used, powerful deep learning 

model. Figure 6 shows the network architecture of Mask 

R-CNN. The input images are first sent to ResNet for 

feature extraction. The backbone feature map is passed 

through the region proposal network (RPN) to extract the 

possible ROI. This ROI is mapped into a fixed 

dimensional feature vectors by the ROIAlign layer. Two 

branches are for classification and regression of the target 

boundary box through the fully connected layer—the fully 

convolutional layer upsamples the other branch to obtain 

the segmented region image.  

MPViT follows a unique approach to multi-scale patch 

embedding and multi-path structures compared to other 

Transformers (Figure 7). A four-stage feature hierarchy to 

generate feature maps at various scales is constructed. The 

blocks of the proposed multi-scale patch embedding (MS-

PatchEmbed) and multi-path Transformer (MP-

Transformer) are stacked at each stage. By applying 

convolution operations with overlapping patches, the MS-

PatchEmbed layer uses fine and coarse-grained visual 

tokens at the feature level. Then, the tokens embedding 

features of varied sizes are fed into the MP-transformer 

encoder separately. In this transformer block, global self-

attention is performed by each transformer encoder with 

various patch sizes. The generated features are aggregated 

to allow for fine and coarse feature representations. In the 

feature aggregation step, a global-to-local feature 

interaction (GLI) process is introduced to connect the 

local convolutional features to the global features of the 
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Transformer, leveraging the local connectivity 

convolution and the global connectivity context of the 

Transformer. 

 

 

Figure 7. Architecture of the MPViT. 

 

4.3 Results post-processing 

The output of the instance segmentation model is the 

mask binary map in raster format. Besides, to avoid edge 

effects in the prediction results, there was a 20% overlap 

between the test images. Therefore, in post-processing, the 

raster data is used as input and stitches predictions into a 

vector format building distribution map. 

4.3.1 Watershed algorithm 

Figure 8a) is 

smaller than the area of the building roof or the entire 

building shape itself, it is possible to ensure that the local 

maximum is located within the building area and not 

within the connection section. The distance transform is 

used as the cost map (Figure 8b), and the local maximum 

of the distance (Figure 8c) is used as the sink 

points/markers to separate connected buildings. 

 
Figure 8. Illustration of the improved watershed algorithm. 

4.3.2 Scene mosaicking 

Figure 9. The 

method first sorts the masks in the overlap according to 

their areas, calculates the intersection-over-union (IoU) 

between them, and eliminates the masks with smaller 

areas if the IoU is more significant than a threshold.  

 
Figure 9. Effect of NMS strategies in scene mosaicking. 

 

5. Experiment 

5.1 Implement details 

The training of the Mask R-CNN model with an MPViT 

backbone was implemented through Detectron2 (Wu et al., 

2019). The maximum number of iterations was set to 
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30000 using a multi-scale training strategy, which resizes 

the input such that the shorter side is between 900–1100, 

whereas the longer side is ≤ 1333. Additionally, the 

AdamW optimizer was used for network optimization 

with an initial learning rate of 0.0001 and weight decay of 

0.05. We selected a batch size of 16 and an initial learning 

rate of 0.0001, which decays 10 times at the iterations of 

24000 and 27000. All the parameters were initialized 

according to the orthogonal distribution. Furthermore, we 

employed random cropping, flipping, and random rotation 

to avoid overfitting the augmentation model. The 

experiments were implemented on a large-scale platform 

called mdx in 4 Nvidia A100 GPU (40 GB) (Suzumura et 

al., 2022).  
5.2 Evaluation Criteria 

To quantitatively evaluate the performance of building 

extraction and usage classification algorithms, this study 

uses the mean recall, precision, F1 scores and accuracy to 

assess the prediction results, as shown in Equation (1). The 

TP (True Positive) and FP (False Positive) indicate the 

correct and incorrect building detections, respectively. As 

illustrated in Figure 10, we used an IoU threshold of 0.5 

to classify the predictions as correct (TP).  

 Precision =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

(1)  Recall =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 F1 =
2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

 

 

Figure 10. Schematic representation of the object-wise metric. 

5.3 Results of building extraction 

Buildings and other essential features in different areas 

show different grey values, texture, density, and size 

characteristics. Therefore, to evaluate the accuracy and 

robustness of the prediction results, we randomly selected 

three 1-km2 areas for rural, suburban, and urban regions in 

Hyogo Prefecture and manually created ground truth as 

test data. All test images were upsampled 2× through 

super-resolution. To compare the effectiveness of the 

applied watershed algorithm, the result of the model 

without post-processing was applied for comparison.  

Figure 11 shows the predicted results of two models and 

the corresponding RGB image and ground truth of the 

three areas. For the sake of clarity, some areas have been 

selected for enlargement. The watershed algorithm refines 

the segmented building boundaries, leaving watershed 

lines inside the buildings' segmented results. The building 

adhesion problem is somewhat alleviated, as shown in the 

yellow circles in Figure 11a, b. This illustrates that the 

watershed algorithm is effective in the segmentation of 

structured buildings or low-density built-up areas. For the 

high-density building areas in Figure 11c, the model can 

identify most buildings and separate them with slightly 

lower accuracy. However, it is challenging to separate 

small buildings from large connected areas. This is 

because we assume that the connected parts are usually 

smaller than the building itself. This assumption does not 

hold when the buildings are small and dense, especially in 

urban areas. This can also be obtained from the 

quantitative results in  

Table 2; the best result is shown in bold. The model 

with a watershed algorithm can achieve a slightly better 

performance than the baseline model in terms of recall and 

F1 in rural and suburban areas. However, the precision of 

all regions is lower than the baseline model. This is 

because the watershed method is based on the distance 

transformation of the building. Building with complex 

structures or small internal connections will be mistakenly 

divided into multiple parts, as indicated by the red circles 

in Figure 11. In urban areas, this phenomenon is more 

common. Over-division of buildings is more frequent 

compared to the correct division of connected parts, which 

causes the accuracy in urban areas to decrease after 

applying the watershed algorithm. 

Table 2. Object-wise metric of different test areas  
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Area Model Precision Recall F1 

Rural 
MPViT-b + WS 0.748 0.652 0.697 

MPViT-b 0.750 0.647 0.695 

Suburban MPViT-b + WS 0.836 0.755 0.793 

MPViT-b 0.840 0.748 0.791 

Urban 
MPViT-b + WS 0.767 0.625 0.689 

MPViT-b 0.780 0.639 0.694 

Figure 11. Prediction results of two models in (a) rural, (b) suburban, and (c) urban areas 

 

6. Discussion 

6.1 Cost map of watershed algorithm 

The watershed algorithm segments the gradient image 

based on the input cost map. The catchment basin is the 

dark area, and the watershed line will stop at the outline of 

the dark part of the gradient image. In the traditional 

watershed algorithm based building extraction, the 

grayscale map of remote sensing image or Digital surface 

model (DSM) is generally chosen as the input image. The 

grayscale map of the image provides the true outline and 

brightness information of the building while DSM data 

provides direct access to the height information of the 

building. In this paper, in order to improve the drawback 

that the watershed algorithm is easy to over-segment, the 

distance transform diagram is chosen as the cost map. To 

 
2  URL: https://www.geospatial.jp/ckan/dataset/2010-2018-

hyogo-geo-dsm (Accessed on 07/28/2022) 

verify the effectiveness of this improvement, we tested the 

effect of different input sources on the test data of 

suburban area, which are 1) Grayscale image, 2) DSM 

data, and 3) distance transform diagram. The DSM data 

were acquired from the Hyogo prefecture-wide DSM 

dataset released by the Ministry of Land, Infrastructure, 

Transport and Tourism of Japan, with a resolution of 1m 

1F2. Table 3 shows the quantitative results of different cost 

maps, where the distance transform diagram has the best 

result of all indicators. It could be also be illustrated in . 

Since the local maxima of grayscale images depend on the 

roof colour, the same building may have multiple ones. 

The watershed algorithm not being able to give the actual 

boundary of each building but lies somewhere between the 

boundaries. This can lead to over-segmentation even for 
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small buildings. The results using DSM data successfully 

eliminated small connected parts, but for roofs with 

significant slopes, it is easy to split a circle around the 

extreme value point into islands. This may be because the 

DSM data is not accurate enough, or due to the 

obscuration of objects such as trees. Also, some buildings 

may have adjacent roof ridges, which results in no local 

maximum inside the building, only a large local maximum. 

This is also not conducive to the division of adjacent 

buildings. 

Table 3. Object-wise metric of different cost maps. 

Cost map Precision Recall F1 

Grayscale image 0.743 0.718 0.730 

DSM 0.775 0.745 0.760 

Distance transform 0.836 0.755 0.793 

 

Figure 12. Processed prediction of different cost map of the 

watershed algorithm. 

6.2 Marker of watershed algorithm 

The marker is the initial area of the catchment basin, 

which is forced as a minimum value. By providing a 

marker for each object and background and making it the 

catchment area base, the desired object can be split from 

the background. The marker-based watershed algorithm 

utilizes the gradient information, the building itself and the 

background information of the detected building area, and 

can effectively extract the closed contour of the building, 

which has the advantages of continuous and closed 

boundaries. In this section, we compared two marker 

determination strategies, a thresholding-based method and 

a local-maxima-based method. The thresholding method 

sets the part greater than the threshold as the foreground 

which does not participate in the segmentation. Thus, the 

watershed operation is performed on the unknown region 

of the part smaller than the threshold. The local maxima 

method finds the local maxima in the building and uses it 

as the starting point of the watershed algorithm. 

Table 4 and Figure 13 shows the quantitative and 

qualitive results of different marker generation strategy. 

The distance transformation with the thresholding method 

brings worse results. This is because the distance 

transform assigns more weight to large patches and less 

weight to smaller patches and edge pixels. Therefore, for 

large connected buildings, even the weight of the 

connection is greater than the weight of the small building 

itself. Therefore, applying thresholding removes not only 

connections but also small buildings. In contrast, the 

distance transform with the local maximum method used 

in this paper effectively separates connected buildings 

while avoiding over-segmentation, proving the method's 

effectiveness. However, this method does not take full 

advantage of the RGB data of the original image. And it 
is challenging to separate small buildings with large 
connected areas. We plan to overcome these problems in 

future work. 

Table 4. Object-wise metric of different markers. 

Marker Precision Recall F1 

Thresholding 0.695 0.629 0.660 

Local maxima 0.836 0.755 0.793 
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Figure 13. Processed prediction of different marker of the 

watershed algorithm. 

7. Conclusion 

We proposed a framework for building extraction based 

on an instance segmentation approach with a watershed 

algorithm suitable for open-sourced satellite images. The 

framework consisted of three main steps: image pre-

processing, building instance segmentation and result 

post-processing. For open-sourced satellite images, pre-

processing using colour normalization based on reference 

maps and super-resolution could improve the image 

quality and enhance textural details. Then, the Mask R-

CNN model with an MPViT backbone was applied to 

extract the building footprint at the instance level. Finally, 

the watershed algorithm, which used distance 

transformation with the local maxima method, was 

applied post-processing for segmenting connected 

buildings. Compared with other input sources, the 

proposed watershed approach could effectively separate 

connected buildings while avoiding over-segmentation. 

However, it is hard to separate small buildings with large 

connected areas. Besides, buildings with complex 

structures in urban area tend to mistakenly be divided into 

multiple parts. In the future, we intend to overcome the 

above issues. 
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