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１．Introduction 

In 2018, successive heavy rain resulted in multi-

locational, devasting flood and landslide. Approximately 

80% of high-risk areas in Hiroshima and Okayama 

Prefecture had been flooded or corrupted. The restoration 

of roads related to real life did not begin until 14 days after 

the disaster. In addition, social, economic activities 

harmed, and rescuing victims and restoring other facility 

had difficulty with temporarily blocked roads. 

 The government’s road management plan focused on 

the rapid recovery of disrupted human mobility. However, 

with increased uncertainty about post-disaster, their plan 

relies on the current situation and their experience. 

Moreover, they have difficulty predicting and evaluating 

the change of human mobility under recovery operation. 

These limitations make the current road recovery plans 

inefficient. 

For effective road recovery strategies in post-disaster, 

we proposed data-driven Deep reinforcement learning 

(Deep RL) algorithm combining traffic flow analysis 

based on mobile phone GPS data. Concretely, traffic 

analysis allows to predict and evaluate mobility recovery 

with a series of reconstructions. Stochastic numerical 

models with unstructured input data of road-usage could 

determine optimal solution with consideration of human 

mobility. 

Deep RL deals with many uncertainties that be difficult 

to fully consider and identifies optimal answer by 

exchanging environmental information and reward signal. 

The optimization goal is to maximize the sum of discount 

reward. Among four components in Deep RL (e.g., agent, 

action, state, reward), the reward infers heuristic 

knowledge of the goal, and encourages a behavior 

consistent with some prior information. For the optimal 

policy, the reward system should be able to express the 

effectiveness of agent’s action based on the given state 

information. 

The considerations in the reconstruction project are the 

quality, working duration, and cost. To derive optimal 

policy within specific number of steps which means the 

project period, we set human mobility recovery rate, road 

connectivity, travel cost as the reward factors, and created 

the reward framework. Certain factors are regarded as 

more important or less important, depending on the 

opinion of the decision maker. But, if the weighted reward 

does not properly represent optimization problem, it might 
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fail to get optimal road recovery plan. 

It is quite important to derive the optimal policies from 

any preference for enhancing the robustness and 

generality of our model. In this paper, we determined 

general optimal policy for all possible preference spaces 

and identified the difference for each preference by 

applying envelope multi-objective optimization algorithm. 

The reminder of this paper is organized as follows. In 

Section 2, we explain the methodology. Section 3 

describes the digital road map and mobile phone GPS data 

in Hiroshima Prefecture. In Section 4, we illustrate the 

suggested decision-making system. In Section 5, we 

explain our results. Section 6 presents discussion and 

conclusion. 

２．Background 

Deep RL is formulated via Markov decision process. 

The agent in this method interacts with an environment at 

discrete time steps 𝓉, and could learn the effectiveness of 

each action, and approximate the best action with given 

situation data.  

This method estimated action value function employing 

deep neural network and improving itself iteratively with 

the basic update method. The network extracts the 

contextual information from a large amount of 

unstructured data, and models parameterized approximate 

function without the curse of dimensionality. 

2.1．Multi-Objective reinforcement learning 

The aforementioned methods have focus on single-

objective settings. On the other hands, multi-objective 

reinforcement learning (MORL) have been suggested to 

improve the performance of the Deep RL agents on real-

world problem having multiple conflicting objectives. 

The MORL could be expressed the tuple 

〈𝒮, 𝒜, 𝒫, 𝓇, Ω, 𝒻Ω〉 with state space 𝒮, action space 𝒜, 

transition matrix 𝒫, vector rewards 𝓇, one for each goal, 

the preference space Ω , and preference function 𝒻Ω 

which typically defined with a linear scalar function. 

 𝒻𝓌(𝓇(𝓈, 𝒶)) = 𝓌 ⊺𝓇(𝓈, 𝒶) (1) 

The optimal policy in MORL depends on the relative 

preference among competing criteria. There are two types 

of policy method: single-policy methods and multi-policy 

methods. The agents in single-policy methods identify the 

optimal policy with preference they already know. 

Otherwise, multi-policy approaches learn a set of policies 

to obtain Pareto frontier of optimal solutions, so it is able 

to estimate optimal policies without prior knowledge of 

preference. 

We focus on multi-policy method to make our model 

adapt to any government’s preference and identify optimal 

recovery plan. Several algorithms have been devised: 

multiple runs of a single-policy method over several 

preferences, the policy-based RL learning the optimal 

manifold, encapsulating preferences as input. However, 

these methods have difficulty adapting to new preferences 

that have not been used in training phase. 

2.2．Envelop multi-objective RL 

Yang et al. suggested a MORL algorithm called envelop 

multi-objective reinforcement learning. Their method 

estimated a single policy network that is optimized over 

the entire space of preferences defining an optimality filter 

ℋ. This estimates the current solution frontier to produce 

the action value function that optimizer utility given state 

𝒮  and preference 𝓌 . Moreover, they increased sample 

efficiency detaching preference from the transitions, and 

accelerate the coverage of one parametric function to the 

optimal one with reasonable sampled trajectories.  

3．Data Collection / Processing 

We utilized three datasets to estimate road conditions in 

terms of recovery operation and define the agent’s action 

space. 

Figure 1. The framework of reinforcement learning 
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3.1．Mobile phone GPS data 

The Agoop Co., Ltd. provided mobile phone GPS 

records for approximately 0.3% of the population in 

Hiroshima Prefecture (Hiroshima, Higashi-Hiroshima, 

Kure). This dataset contains latitude, longitude, accuracy 

and timestamp. As shown in Table 1, the number of users 

is 3,817. The GPS logs amounted to 102,821 from June 1 

to June 30. 

The accuracy in GPS data means radius error caused by 

some technical obstacles. Our data has a margin of error 

of a 500-meter radius on average. We select the origin-

destination matrix (O-D) as the representatives of human 

movement to alleviate the bias of inaccurate information. 

We confirmed that 2,970 kinds of O-Ds pass through the 

afflicted road by Western Japan flooding.   

3.2．Local geographic information 

 Ministry of Land, Infrastructure, Transport and Tourism 

(MLIT) and Japan Statistics Bureau adjoin position 

factors and regional information (e.g., resident, commuter, 

disaster risk etc.,). The information of commuters and 

residents of 1 km grid are utilized to calculate the hourly 

travel demand of O-Ds. Besides, the road topology data is 

one essential factor of traffic assignment with sequential 

reconstruction. We get real road network’s information 

from Japan Digital Road Map Association. Digital Road 

Map (DRM) is the standard national DRM supporting 

Japanese ITS infrastructures. The road networks are line 

data containing information such as road types and widths. 

3.3．Damage road information 

Disrupted road information provided by Municipality 

and MLIT includes the road name, the extent of damage, 

and restorative state. The road reconstruction process 

consists of three types: Road closed, one-way traffic, and 

the completion of recovery. This information help citizens 

and business factors identify the current state and 

determine the most reasonable path. 

We used the location information of damage roads and 

the details of road in DRM (e.g., the number of lanes, 

width, road type, length) and defined the target road in 

action space and the workload (total area) of each action. 

4．Decision-making system 

Government, the main decision maker, devises 

workforce distribution plan. They want the operation 

crews to cooperate with others while fulfilling their 

responsibility. Our model is based on multi-agent Deep 

RL which induce to do collaboration sharing each 

behavior data. 

4.1．Component of Decision-making system 

4.1.1．Agent 

One operation crew is the agent, and the number of 

workers is optional. The crews assumed to do “Evacuation 

and Embankment”, which is to remove soil and rock, 

replace, and compact demolished road section. Hiroshima 

Prefecture sets the amount of available operation per a day 

(8 hours) with one worker. Table 2 describes the operation 

hour it takes to complete
2100m  . We set that the daily 

workload of one worker would be
2256m . 

Table 1. The detail of mobile phone GPS data 

Observed 

Period 

Average daily number 

of IDs in the target area 

Average daily GPS 

logs in the target area 

2018/06/01 ~ 

2018/06/30 

3,817 

(0.26% sample rate) 

102,821 

(avg. 27 logs/user) 

 

Table 2. The working hour of one agent’s operation 

2( /100 )h m  

Excavation 

Depth 

Type of 

Machine 

Under 40 cm 40cm ~ 80cm 80cm ~ 120cm 

Backhoe Shovel 2.0 3.3 4.7 

Large Breaker  

&           

Backhoe Shovel 

2.1 2.8 3.5 
Concrete Crush 

&          

Backhoe Shovel 
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4.1.2．Action 

The agent in Deep RL selects one action, and makes the 

change of environment at each time step. In this paper, the 

agent selects one disrupted road at each time step (one 

day) and had to recover within pre-defined daily workload. 

According to Section 13 of Road Act, MLIT and 

municipal government are the main authorities. MLIT 

mainly takes change of expressway and highway. On the 

other hand, municipal administrations take the 

responsibility of other parts in their region. In Western 

Japan, the number of disrupted roads under the jurisdiction 

of one local government is at least fifteen. 

The potential users in our framework might be the 

municipals, that is, one working group might be placed in 

one damage road among the government’s jurisdiction. 

Accordingly, we think that the agent in our model should 

cover fifteen disrupted roads at least. So, the action space 

consists of fifteen target roads. 

4.1.3．State 

The state space describes the input data for determining 

action value function. The data included the information 

about corresponding reward, environment and implied the 

agent’s objective and the effect of each action. 

We wanted the agents to cooperate with each other, so 

utilized the method suggested by Foerster et al. In detail, 

we add the numerical signals to the input layer, and make 

the agent each identify the cooperation with other agents 

via learning process. At first, we define the meaning of 

cooperation and communication protocol representing the 

teamwork. 

Restoring inter-connected damage roads concurrently 

helps human mobility recover rapidly. In case of the 

restoration of D21 and D36 at the same time, there are 

three types of recovered traffic: 1) O-Ds passing only D21, 

2) passing only D36, and 3) passing both D21 and D36. 

We define the cooperation between two agents using O-

Ds’ road usage. Let denoted by 𝒯𝒸
ℯ traffic volume driving 

down both damage road 𝒸 and damage road ℯ. ℛ refers 

to the set of damage roads covered in multi-agent RL 

system. The effect of cooperation is calculated with 

Equation 2: 

 𝒞𝒫𝓉
𝒜ℴ =

𝒯𝒸
ℯ

∑ 𝒯𝒹
ℊ

𝒹,ℊ𝜖ℛ

, 𝒸, ℯ ∈ ℛ (2) 

where 𝒞𝒫𝓉
𝒜ℴ  means the cooperation effect at step 𝓉 

assuming that the agent A selects damage road 𝒸 and the 

agent 𝒜ℴ selects damage road ℯ. 

The state space includes four factors: the operation 

progress rate of each damage road (𝒫𝓉
𝓇𝓃) in action space, 

human mobility recovery rate of each disrupted road 

section (𝒯ℛ𝓉
𝓇𝓃), travel time (𝒯𝓉), and the overall human 

mobility recovery rate (𝒯ℛ𝓉
𝒪) at each time step 𝓉. With 

these components, we add the effects of cooperation with 

other agents(𝒞𝒫𝓉
𝒜𝓂) and the impact of selected damage 

road(𝛼𝓇𝓉
) . Using the protocol, each agent predicts the 

effect of teamwork of each action and determines its 

policy with the consideration of collaboration. 

 

𝓈𝓉

= {
𝒫𝓉

𝓇1 , ⋯ , 𝒫𝓉
𝓇𝓃 , 𝒯ℛ𝓉

𝓇1 , ⋯ , 𝒯ℛ𝓉
𝓇𝓃 , 𝒯𝓉 , 𝒯ℛ𝓉

𝒪 , 𝒞𝒫𝓉
𝒜1

, ⋯ , 𝒞𝒫𝓉
𝒜𝓂 , 𝛼𝓇𝓉

  
} 

(3) 

4.1.4．Reward 

The road reconstruction is related to multi-objective 

optimization (MOO). The goals in MOO are in 

complementary, conflicting or independent relationship. 

Brys et al. suggested the combination of basic reward and 

Figure 2. Reward setting 
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extra reward to help the agent explore behaviors with 

heuristic information of system. 

The fundamental goal is to restore disrupted human 

mobility to normal state rapidly. We define the basic 

reward as the change of human mobility recovery rate. 

This is because we want the agent to learn which roads 

have the high impact on human mobility recovery while 

choosing its action, not giving prior knowledge. Further, 

the agents are required to have a cooperative altitude and 

consider the travel time, the operation costs. We set the 

sum of numerical protocol (∑ 𝒞𝒫𝓉
𝓀𝓂

𝓀=1 ) and travel cost as 

the extra rewards. 

Human mobility recovery rate, the main reward, is the 

composite effect of all agents’ action. The usage of 

original value does not properly demonstrate the recovery 

effect of each action, and then the common reward 

interferes with achieving their goal making the agents lazy. 

As shown Figure 2, we utilize the traffic weight 𝛼𝓇𝓉
 

indicating how much disrupted road 𝓇𝓉  they select at 

time step 𝓉  has affected the overall human mobility 

recovery rate. This weight is the proportion of traffic 

volume of each damage road for the total traffic volume. 

4.1.5．Learning process 

The framework is illustrated in Figure 3. The agent 

selects one disrupted road based on Q value function at 

each time step. With target roads’ accumulative progress 

rate at each time step, the attribute of each damage road 

(e.g., travel time, basic capacity etc.,) and travel demand 

of each O-D are recovered and updated. And then, traffic 

flow on each link is estimated and human mobility 

recovery rate is calculated. At last, if mobility recovery 

rate is over target value, the simulation is over and current 

policy is updated using accumulated experiences that are 

acquired through the interaction with environments. 

Otherwise, the agent does the whole processes repeatedly 

up to the maximum number of steps. 

4.2. Human mobility estimation model 

We estimate loads on each road section applying 

stochastic traffic assignment. 

4.2.1．The restoration of road capacity 

Soon after the flooding, the operation crew did 

reconstruction to secure practicable lanes. The details of 

the meaning of reconstruction, the initial state of damage 

road are as follows: 

• Definition 1. Reconstruction is to secure available 

lands up to the original level. 

• Assumption 1. Road’s capacity represents the 

maximum traffic using available lanes. The initial 

capacity of all damage roads is zero. 

The recovery of decreased capacity is followed with the 

work progress rate. Sigmoid function is used to estimate 

working rate. This function describes productive 

efficiency in construction project. Fourteen days after 

Western Japan flooding, vehicles could drive on most 

highways and main roads. So, we assumed that 14 days 

are needed to complete the restoration of road with the 

maximum amount of operation. Road’s cumulative 

progress rate is approximated with Equation 4: 

 𝒫𝓉
𝓂 =

1

1 + ℯ−0.8𝓍𝓉
, (4) 

Figure 3. The framework of decision-making system 
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∵ 𝓍𝓉 = −7 + 13 (
∑ 𝒲𝓀

𝓉
𝓀=0

𝒮𝓂
) 

where 𝒫𝓉
𝓂  is the cumulative progress rate of damage 

road 𝓂  at step 𝓉 . ∑ 𝒲𝓀
𝓉
𝓀=0  means the cumulative 

workload up to the step 𝓉. 𝒮𝓂 is the total workload of 

corresponding road. 

4.2.2．The travel demand with reconstruction 

People are unable to move or isolated if the road system 

is seriously damaged and there exist no detour. As 

damaged roads have been restored, traffic in the network 

has been increased to pre-disaster level. Accordingly, we 

set one assumption with trip generation under 

reconstruction. 

• Assumption 2. The travel demand is influenced by 

the presence of alternative routes, the minimum value 

of the cumulative progress of disrupted road that O-

D passes through on normal days. 

4.2.3．Traffic allocation assignment 

Stochastic traffic assignment model is utilized to 

estimate vehicular flow under recovery operation. O-Ds 

might select the trajectories having sufficient capacity, 

because disrupted road has the unstable capacity and the 

risk of the surge of travel time. 

• Assumption 3. The amount of traffic on one of 

trajectories depends on the minimum capacity of the 

link that constitutes this route. 

The traffic allocation algorithm is described using 

Meng et al. [44] notations. 𝐺 = (𝒩, 𝒜)  refers to 

transportation network, where 𝒩, 𝒜  are the sets of 

nodes and link, respectively. O-D with origin node 𝓇 

destination node 𝓈  is defined by ℋ(𝓇,𝓈) . ℛ and 𝒮 

mean the set of origin, destination respectively. Denoted 

by 𝒦𝓇𝓈  the set of paths connecting ℋ(𝓇,𝓈)  by 𝓆(𝓇𝓈),𝓉 

travel demand of ℋ(𝓇,𝓈) at each time step 𝓉. 

With Assumption 3, denoted by 𝒞𝓉
𝓀  the minimum 

capacity, by 𝒰𝓉
𝓀  road usage rate on path 𝓀 ∈ 𝒦𝓇𝓈  at 

each time step 𝓉 . ℱ𝓉
𝓀  means the traffic flow on path 

𝓀 ∈ 𝒦𝓇𝓈  at each time step 𝓉  and is calculated with 

Equation 5: 

 ℱ𝓉
𝓀 = 𝓆(𝓇𝓈),𝓉 ∗ 𝒰𝓉

𝓀, (5) 

∵ 𝒰𝓉
𝓀 =

𝒞𝓉
𝓀

∑ 𝒞𝓉
𝓀

𝓀∈𝒦𝓇𝓈

 

The traffic flow of each link 𝒱𝒶,𝓉  at each time step 𝓉 

would be calculated with the fundamental flow equations 

 

𝒱𝒶,𝓉 = ∑ ∑ ∑ ℱ𝓉
𝓀𝛿𝒶

𝓀

𝓀∈𝒦𝓇𝓈𝓈∈𝒮𝓇∈ℛ

, 𝒶 ∈ 𝒜 

∑ ℱ𝓉
𝓀

𝓀∈𝒦𝓇𝓈

=  𝓆(𝓇𝓈),𝓉 , 𝓇 ∈ ℛ, 𝓈 ∈ 𝒮 

(6) 

where 𝛿𝒶
𝓀 = 1  if path 𝓀 ∈ 𝒦𝓇𝓈  between ℋ(𝓇,𝓈) 

traverse link 𝒶 ∈ 𝒜, and 0 otherwise. 

4.2.4．Human mobility recovery rate 

We selected traffic volume as the recovery evaluation 

index, because our model focus on securing the stable 

condition. The human mobility recovery rate in each 

damage road and the overall road network are calculated 

for input layer and reward. The human mobility recovery 

rate of target road 𝒦  at each time step 𝓉  is the total 

amount of loads with respect to the total traffic volume 

normal days. Equation 7 is as follows: 

 𝒯ℛ𝓉
𝒦 =

∑ ℱ𝒶,𝓉𝒶∈𝒜

∑ ℱ𝒶,𝓃𝒶∈𝒜
 (7) 

where 𝒜 is the set of links that make up the road 𝒦 and 

each link denoted by 𝒶. ℱ𝒶,𝓃 is the estimated traffic flow 

on link 𝒶 on normal days, ℱ𝒶,𝓉 is the estimated traffic 

flow in link 𝒶 at each time step 𝓉. 

5．Experiment 

We utilized envelop MOO algorithm suggested by 

Yang et al. for identifying the generalized optimal policy 

over any preference. 

5.1. Outline of model setting 

There are three types of operation crew which consists 

of four, eight, and seventeen workers respectively. They 

have specific fifteen disrupted roads as the work target. 

Our system could consider forty-five damage roads 

simultaneously. Figure 4 describes the target roads 

subjected to each groups’ action space. The common 

objective of all agents is to recover human mobility up to 

Figure 4. The damage road covered in multi-agent system 

Figure 4. The damage road covered in our model 
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75% of pre-disaster level within 30 steps.  

In Yang et al.’s paper, they estimate an action value 

function through over 3000 training episodes, and verify 

the robustness of their algorithm. Our model includes the 

/stochastic traffic assignment. It is practically 

unreasonable to do thousands of training process. 

Accordingly, the agent’s preference space is defined as 

follows: Each weight is 𝓌𝒾 ∈ [0, 0.1, ⋯ , 0.9, 1], and the 

sum of three weights is 1. 

In training phase, the operation crews learned about 

each preference three times. And then, the agents act 

greedily following to the optimal policy for each 

preference.  

5.2. Learning Result 

In sub-section, we identify a set of actions selected in 

accordance with policy. Figure 5 describes the ternary 

contours plots of the human mobility recovery rate and the 

number of steps of each episode with different weight set 

in test phase. The generalized policies were able to 

determine optimal policies for 36 cases of 62 preferences 

in the set of weights. 

The human mobility recovery rate in final varies 

depending on the given preferences. However, we could 

confirm that the lower the weight on the mobility recovery 

rate, the lower final recovery rate. It is important to give 

the agent the evaluation signal related to the agent’s goal, 

even a small value. 

5.3. Verification 

Deep RL used a parameterized function approximator, 

and adjust the weights incrementally during learning. 

Before approximation phase, the optimization objective 

function of action value function, the loss function, is 

needed to define. Envelop MOO algorithm utilized 

homotopy optimization method which trades off between 

main loss ℒ 𝒜  and auxiliary loss function ℒℬ . This 

method updates the policies in a direction that obtain 

better utility rather than approaching the optimization 

result from the previous step. 

The gradient descent algorithm is utilized to solve the 

weight parameter which could find the minimum loss, the 

goal of loss function. In other words, if the loss value of a 

set of sample data is close to zero, it might lead to a local 

/ global optimal solution. 

 

ℒ(𝜃) = (1 − 𝜆)ℒ𝒜(𝜃) + 𝜆ℒℬ(𝜃) 

∵ ℒ𝒜(𝜃) = 𝔼𝓈,𝒶,𝓌[‖𝓎 − 𝒬(𝓈, 𝒶, 𝓌; 𝜃)‖2
2] 

∵ ℒℬ(𝜃) = 𝔼𝓈,𝒶,𝓌[|𝓌⊺𝓎 − 𝓌⊺𝒬(𝓈, 𝒶, 𝓌; 𝜃)|] 

(8) 

5.3.1．Case analysis 

Based on the characteristics of the loss function, we 

estimated the loss value of the experience data from each 

Figure 6. The loss value and weighted recovery effect 

Figure 4. The damage road covered in our system 

Figure 5. The ternary contours plots of human mobility recovery rate (left) and the number of steps (right) 
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episode of the test phase (with different preference). And 

then, we tried to understand how similar a set of agents’ 

actions with each weight is to the generalized optimal 

policy network.  

We selected eight cases based on the sum of all agents’ 

loss value. As Figure 6.b, 6.c shown, except for A with the 

largest loss value, all episodes achieved the goal within 30 

steps. The smaller the loss value, the shorter the number 

of steps it takes to reach human mobility recovery rate of 

over than 75%. While the relative preferences of each 

weight (Figure 6.a) vary, the average travel cost of agents’ 

group (Figure 6.c) in cases with large weight of travel cost 

is generally shorter than that of other episodes. 

The agent in our framework regards other agents as the 

environment, and has different action space depending on 

the group it belongs to. With these characteristics, they 

have their own policies, but the policies of workers in the 

same group might have the similarities. So, we compared 

the policies of each agent group with the eight cases in 

Figure 6.a. 

Before comparing, we extracted general priority order 

of each episode using the operation order and the 

frequency. Plus, we estimated the recovery effect of each 

action, using the average of human mobility recovery rate 

variation for work progress variation. Figure 7 describe 

the loss value and the weighted average of recovery effects 

using operation priority as the weighting value. 

We think that the policy for the rapid human mobility 

recovery is to prioritize roads with high recovery effect. 

That is, the larger the weighted average of recovery effects, 

the better policy for the goal. However, as Figure 8 shown, 

there is a slight gap between the estimated optimal policy 

and our thoughts. 

This is because the difference between the preference 

used when updating policies and when selecting actions. 

Figure 6. The detail information of each episode having specific preference; (a) the ternary plot of loss value and 

the selected eight cases, (b) the weight values, (c) the loss value (line graph) and the human mobility recovery rate 

(bar graph), (d) The average travel time of each workgroup (bar graph) and the number of steps (line graph) 

Figure 7. The loss value and weighted recovery effect 
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For the former, the agent estimated the approximate 

function based on the utility of sample data for all 

preferences. On the other hand, the agent selects the 

actions greedily using function value derived by entering 

specific preference into the generalized policy networks. 

The actions might make the weighted reward maximize.  

Figure 8 shows the relationship between the operation 

order and recovery effect of selected roads for each 

episode. We identified that the smaller the loss value (the 

more similar the optimal policy), the agents tend to choose 

the actions with high recovery effect preferentially. 

6．Conclusion 

This study combined envelope MOO and human 

mobility data to identify generalized restoration plan over 

any preference. In terms of practical run-time, we defined 

the preference space with 62 sets of weighted values. The 

sum of three factors in one set of preference is one.  

 We tested the adaptability of the agent’s preference 

space with generalized approximation policy network. 

The agents could achieve human mobility recovery rate 

over 75% in 30 steps, depending on the optimal policies 

for 36 types of weights. 

We confirmed which the sequence of actions with each 

preference is similar to the generalized policy networks 

using the loss value. 8 cases are selected based on the loss 

value, and the preference, the human mobility recovery 

rate, and the average of travel time of each episode were 

graphically plotted. As a result, the greater the loss (the 

greater the distance from the optimal choice), the lower 

the recovery rate. For achieving the agents’ objective, the 

rewards related to their targets should be provided 

noticeably, even at low values. 

For rapid human mobility recovery, it is natural to 

restore road with high recovery effect first. After learning, 

the agents tend to choose this type of roads preferentially. 

However, there is a slight gap between estimated policies 

and conventional thought. This is because the differences 

arise between generalized policies for overall preferences 

and those adjusted for individual preferences. 
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